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OBJECT

The object of this thesis was to apply mathematical

formulas based on elastic theory to duralumin columns in an

attempt to predict the failing loads in the range below that

characterized by Euler failures.

The results of the investigation showed that if cer-

tain relations in the dimensions of the columns were fulfilled,

the theory gave a good approximation to the critical stress.



INTRODUCTION

The practical aspect of the problem of instability of

compression members appears in connection with the buckling of

the outstanding flanges of various sections subject to end loads.

It has been observed for a number of years that the

tendency of design towards greater strength by distributing ma-

terial at a distance from the neutral axis in the form of wide

and thin flanges, or other parts, has been limited by the poss-

ibility of a type of secondary failure of the part itself, rather

than the member as a whole. Compression members having angle, or

channel, or similar sections, in which the outstanding legs are

wide and thin, or in which the whole section is made up of thin

parts, show a tendency to fail through local wrinkling or twist-

ing, rather than the ordinary failures of direct compression or

bending. Local buckling of an outstanding leg may occur, or the

whole member may twist about its longitudinal axis.

These failures occur at loads less than those indica-

ted as being critical by Euler's formula, and at comparatively

low values of the slenderness ratio. It is the purpose of this

paper to give a theoretical treatment of the subject, together

with the results of tests on column sections exhibiting this type

of failure. The work is done with duralumin for a material, and

on the assumption that the metal is isotropic, with similar elas-
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tic properties in all directions.

For theoretical considerations, it is usual to assume

that the thin projecting flange or leg is approximated by a flat

plate, simply supported at the top and bottom, where the load is

applied, and free or under various degrees of fixity at the other

two edges. The exact conditions depend on the part of the section

which the plate represents.

The theoretical approaches to this problem include an

exact mathematical analysis, in which a differential equation for

the deflection of the plate from its plane is obtained and then

solved for conditions giving the critical stress. An alternative

is a method of energy, in which the internal work of elastic de-

formation is computed. This is then equated to the external work

done by the applied force in order to find the critical load.

Previous work done in this direction is mentioned in

the historical discussion which follows.
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HISTORICAL DISCUSSION

The problem of the buckling of a rectangular plate un-

der edge thrusts in its plane has occupied the attention of a

number of investigators since about a decade before the begin-

ning of the twentieth century. The first to take up this subject

was G. H. Bryan, who, in the "Proceedings" of the London Yath-

ematical Society (1890, Vol. 22, p.54) treated the simple case

of a plate under thrust on both of its edges, which were simply

supported. In connection with this article, H. Reissner, in a

paper entitled, "Uber die Knicksicherheit ebener Bleche," Zent-

ralblatt der Bauverwaltung, (1909) Vol. 29, No. 14, notes that

Bryan received some ideas on method (which was that of internal

and external work) from Navier. This paper of Bryan's seems to

be the first, however, and is mentioned by most of the later

writers, who give him the credit for the original solution of

the problem.

Following the work by Bryan, the subject evidently drop-

ped from sight for almost twenty years, until S. Timoshenko pub-

lished several notes in Russian in the yearbooks of the Techni-

cal Institutes of St. Petersburg (1906-1907) and of Kiev (1907-

1908.) These treatments appeared later in German publications as

follows: In an article entitled, "Einige Stabilitutsprobleme

der Elastizitotstheorie," in the Zeitschrift fi*ir Mathematik und

Physik, (1910) No. 5P, p. 337, Timoshenko gives several solutions
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arrived at by the exact mathematical method. His treatment inclu-

des the cases where the edge thrust is applied at two of the edges,

the third is free, and the fourth is either simply supported, or

has various degrees of fixity up to the complete state. The methods

in this paper are rigorous, and become complicated in the more ad-

vanced cases. Several years later, in the Annales des Ponts et

Chaussies, (1913) No. 17, p. 372, the same author has a paper en-

titled, "Sur la Stabilit6 des Systemes Elastiques," in which he

attacks the same problems by the method of internal and external

work, and arrives at the same conclusions for the cases treated be-

fore. In addition, the method is extended to cover more complicated

conditions of loading, in which the edge thrust varies from point

to point.

In 1909, H. Reissner published the article mentioned

earlier in this section, in which he independently arrived at the

same results as Timoshenko for the plate which was free on one edge

and under different degrees of fixity on the other. Reissner's me-

thod was much the same as Timoshenko's earlier one, including as

it did the integration of the differential equation for the deflec-

tion. Reissner treated four cases, including those noted above and

Bryan's case, in which all four sides were simply supported.

Several Years later, the Engineering Record, Vol. 68, No.

26, (Dec. 1913) on page 722 had an article by R. J. Roark, "The

Strength of Outstanding Flanges in Beams and Columns." This paper

dealt with the subject in a somewhat approximate manner, and the

development included a number of assumptions. Since this treatment
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will not be mentioned again, it will be described a little more

completely than the others at this point.

Roark assumed that the outstanding flange could be con-

sidered a row of columns if divided vertically, and a row of

cantilever beams with perfect fixity at the root end if divided

horizontally. He then calculated the load carried as an Euler

column, i.e. as if the flange were all by itself. To this was add-

ed the load that could be resisted by the combined reaction side-

ways of the cantilevers, due to a moment at the root of these. By

assuming that the elastic curves in both directions were sections

of parabolas, and that the flange was held with absolute fixity,

Roark was able to integrate over the root to find the total bend-

ing moment. This lead to a result in which the critical stress was

a function of the thickness and width of the flange, but which

included a constant multiplier which did not check very well ex-

perimentally. In a later paper in the same publication, Vol. 74,

No. 20, (Nov. 1916) Roark revised his assumptions to the effect

that the curve of vertical deflection was the sine curve of Eul-

er's theory, and that the horizontal strips assumed the curvature

of a cantilever beam under a triangular disposition of the load.

These led to a reduction of the constant multiplier. At the end of

the article were included results of tests on T and star sections

of large size. Most of the measured critical stresses were below

the calculated results, and only fair agreement was obtained.

Roark noted, however, that when the flange was not perfectly fixed

at the edge, the critical stress was reduced.



Turing the World War, nothing was apparently done on

the problem, and it next appeared in 1921, when Timoshenko again

published a paper, "Uber die Stabilitat Versteifter Platten," in

Der Eisenbau, Vol. 12, p. 147. In this, he gave a recapitulation

of his developments in the 1913 paper and extended the theory fur-

ther to cover the cases in which the plates had shearing forces

along their edges and when there were stiffeners present.

A year later an article by H. M. Westergaard appeared

in the "Transactions" of the American Society of Civil Engineers,

No. 85, p. 576, entitled, "Buckling of Elastic Structures." This

treatment, occupying 100 pages, includes many other problems be-

sides the buckling of plates. There are several sections dealing

with the theories discussed by Bryan and Timoshenko.

About this time, the first data on the compression of

duralumin columns was obtained. This was included in two theses

at the Massachusetts Institute of Technology, one in 1920 and one

in 1922. The results of these were discussed in N. A. C. A.

Technical Note No. 208, "Tests on Duralumin Columns for Aircraft

Construction," by J. G. Lee. This report gives a number of curves,

and suggests empirical formulas for use with different lengths of

column.

Additional test data was supplied in 1927 by R. A. Mil-

ler, whose Air Corps Information Circular No. 598, "The Compress-

ive Strength of Duralumin Channels," advances a semi-empirical

theory for the determination of the critical stress in that type

of section.

In 1930, the Navy Department published the results of
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tests by E. M. Krein in Report PTL - 12, "Tests of Aluminum Al-

loy Columns - Flat Plates and Structural Shapes."

N. A. C. A. Technical Report 382, "Elastic Instability

of Members having Sections Common in Aircraft Construction," by

G. W. Trayer and H. W. March (1931) seems to be the first inst-

ance where the formulas of elastic theory have been applied to

experimental results. The work was done on wood, and the theoret-

ical treatment extended Timoshenko's developments to cover non-

isotropic materials.

In March, 1932, the N. A. C. A. published Technical

Note No. 413, by E. E. Lundquist, on "The Compressive Strength of

Duralumin Colimns of Equal Angle Section." This report applies

the theoretical formulas to test values for angle sections, and

supplies a column chart for the determination of the critical

stress.

The theories of Bryan and Timoshenko are mentioned brief-

ly in several text books, among them Love's "Mathematical Theory

of Elasticity," Timoshenko's "Applied Elasticity" and "Strength of

Materialsq" and Nadai's "Die Elastichen Platten." The last named

work discusses a method whereby the principles of the Calculus of

Variations are applied to the expression for the internal work in

order to find the critical stress.
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PART I

MATHEMATICAL TREATMENT

Since the following work is on the elastic stability

of plates, any discussion must be prefaced by a few remarks on

stability and the mathematics of plates in general.

In connection with stability, Poincarel has an excel-

lent note on the stability of elastic systems in a concept which

he calls the "equilibrium of bifurcation." If we consider the

rectangular plate to be subjected to edge loads of magnitude, P,

and that its dimensions and physical constants remain the same,

the form assumed by the plate is determined by the extension, e,

at the edges where the load is applied, and the curvature of the

plate, a. Both these quantities are functions of P, and the state

of the plate may be represented by a point, with co-ordinates (e,

a), which describes a curve as P assumes different values.

When P is less than the critical load, a u 0, and the

equilibrium state, as defined by e a f(P) is stable. If P exceeds

the critical load, a = 0 would still give a possible solution and

state of equilibrium, but there is also one in which a ; 0, and

where a and e are determinate functions of P, so that the equil-

ibrium states for different values of P may be represented by points

of a certain curve. This curve branches off from the one given by

a a 0 at the point of the critical load, and is described by Poin-

care as the "point of bifurcation." At this point an exchange of

stabilities occurs, and the states represented by the line a a 0

1 Acta Mathematica, Tome 7 (1885)
Love, "Elasticity"
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now become unstable, and the states represented by the curve

a X 0 become stable.

Another theory of elastic stability is due to Southwell,

In this, we consider the series of positions in which the plate

can be held by a gradually increasing P. If the contracted plate

(still in its plane) is given a slight displacement, and the val-

ue of P is such that this displacement can be maintained without

any change in P, then the equilibrium in this contracted state is

critical, and any further increase in P will result in buckling

of the plate. Both these concepts fulfill the physical condit-

ions, and can be allied to the theoretical procedure.

In the succeeding work, the following notation will be

used, since it has become more or less standard with writers on

subjects connected with elasticity.

Symbol Quantity

R Modulus of Elasticity

c-, 1/M Poisson's Ratio

x, y, z Co-ordinates on orthogonal

axes

ax-y ; ~ - Normal Stress on any plane

Tangential Stress on any plane

u, v, w Displacements in x, y, z directions

1 Phil. Trans. Royal Society (1913)
Love, "Elasticity"
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We now consider an element of a plate of finite thick-

ness, t. This element has sides of lengths dx and dy. Following

the conventions of elastic theory, the expressions for the end

forces, and torsional and flexural couples are found from the fig-

ure below:

These are grouped as follows:*

S2

4-t- z-~~
H 1-ar

4f,: d2

417

z z j r z

From these it follows that: S1 = -32 and Hi -H2

The evaluation of these stress resultants and stress

couples in terms of expressions containing the deflection from the

x-y plane is accomplished by the following relations between the

stresses and the deflection, w, which are fundamental in the theory
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of elasticity.

z .-

= -,,047- E At7-

These values are now substituted into

G, and N, which are then evaluated.

For T:

_ Z 2E +-- l+J U7 , -I1)4 2

/44

the integrals for T, Sp H,

E x
2( ) 7 /

For S:

(A t

t A ur C t(§

For H:*
7- E

The discussion of N is taken up later.

For purposes of abbreviation, the constant multiplier of G and H,

is usually referred to as the "cylindrical rigidity" of the plate,

For G:

69

7 4

d a
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and is really the edgewise moment of inertia of a strip of the

Dlate. Wie have:

- m2 E t 3  q t3
-12(m -1) 12(1 -cr )

The ensuing treatment follows in its essentials that

given by Timoshenko in his first German paper. The plate is con-

Y b sidered to be bounded by the four

lines: x = 0, a, and y a 0, b. The

end load P, which is the load per un-

it of length along the edge, is ap-

A
plied to the edges x = 0, a, as in-

dicated. The edge y a b is assumed to be free, and the edge y = 0
to be either simply supported or fixed. In the present case it

will be assumed to be simply supported.

Equilibrium between the stress resultants and stress

couples in the plate is expressed by the following set of differ-

ential equations, the proof of which is not given here.1

~S, )~ dx4- (1)
d- AlN=

IA 2
77 dyf

)l +=0
-- (2)

R efyr Lo Ly f" p.y3

1~ Refer to Love, "Elastioity" p. 534
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Into equations (2) we substitute the values of G and H from above.

This leads to the simplifications indicated below:

cY ( .61)V

The first two equations of (1) are approximately satisfied if we

let 1 =S2 x T2 a 0.

Also, from the original conditions of the problem, we

have: T = -P z constant, and I' = = = = 0.

The values obtained are now substituted into the third of equat-

ions (1), the last four terms of which vanish immediately, so that

the final equation becomes:

+7 2. + =
Xx /xC42 C /7

In the solution of this equation for the critical stress, the fol-

lowing boundary conditions must be taken into consideration:

On the simply supported edges; x a 0, a, at which the

load is applied, we have: '4= 0 ,

For the simply supported edge y 0:

i>= O 6 $> C~ r -rV - 0

On the free edge, y : b, the conditions are:

C +tr- 0 ; & 6191=2
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On substitution of the value, T= -P , into the gener-

al equation, we have:

$ , fz~r Ifzer UrC,)
... - ± + L + -..-- -

This will now be solved for the condition in which the edge, y

0, is simply supported, and the above mentioned boundary condit-

ions apply as stated.

The second of the last set of conditons may be combined

with the first of equations (2) to yield the following:

Since H1 = -H

When the values of G2 and H2 are substituted, we have:

3 2

.( ) - + -CT V -- 7
X 2- 0 X"

This now reduces to the following:

([r X - -{,fx~r~v t _

The first set of boundary conditions will be satisfied if we let

the deflection:

-f -p'~141 ~ {y)

where f(y) is some function which must be determined from the re-

maining conditions. (Note: In the Method of Work, a simpler ex-

2- C 1/2 __j_
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pression for w was assumed directly from general considerations,

and worked equally well.)

An equation in f(y) may be obtained by successive dif-

ferentiations of w and substitution into equation (3).

1111(y )>t~

The solution of this may be written as follows:

5(y) = C,e 0Ce +C3 aAy +C/ 4 Y

From the following two equations, we find that C1 - C2 and

C3 = 0.
z + n-W(f .'x"

Introducing hyperbolic functions, we have:

f(y) = A sinh oy -- B sin7 y

This result is substituted into the boundary conditions for the

edge y a b, which are as follows:

+ crF
dy

-o

At this point, mention may be made of the x- term in the

complete solution, which is:

'xr = | / dy + E15 y

In this, m indicates the number of half waves into which the plate

P ('. Tr)z

C_ Ct

21 - 9)(

7r)
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breaks up, and if it has a value greater than 1. each half wave

may be considered to be a shorter section of plate, simply sup-

ported at the ends.

When the above value of w is substituted into the first

of the y = b boundary equations, and the terms are collected, we

have:

1A' db

When the same value is substituted into the second of

the equations, another is obtained, as follows:

2- Tr~[ ~4~tc ~r)~eA

It now remains to satisfy this pair of equations with a solution

other A = B = 0, which would mean that the plate was in

equilibrium with no deflection from its plane. This is possible

if the determinant of the coefficients of A and B shall vanish,

so that we have:

o=TrZ

The solution of this leads to an equation given on the next page.
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This equation is to be solved for the critical stress, after the

following substitutions of U and V are made, where they are defin-

ed as follows:

Ab V

This leads to the final equation:
2.

F{v L--cr) V + T7 4 + \

The procedure now is to assume a number of values of V, i.e. for

the ratio b/a, substitute them into the above equation, and solve

for U. From U, the critical load may be determined.

As is immediately evident, this method, besides being

somewhat complicated in itself, leads to an equation which is ex-

tremely laborious to solve for a large number of cases. If any

change is made in the boundary conditions, the calculations become

still more involved. Consequently, some other met,4od of approach

is to be desired.
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-Method of Elastic Work-

The hypothesis underlying the theory of elastic work

of deformation is that no stress acting anywhere in the body un-

der consideration is of an impulsive type, but that the stresses

increase from zero to a maximum, so that the average may be taken

for the range of values.

Thus, for direct stresses, we have as the work done in

the x-direction; i- a' 6 X and for tangential stresses, the work

of distortion from any single shear stress is: } 27T

Since these expressions are for a unit element only, the total val-

ue of the internal work is obtained by summing these up over the

whole body, as follows:

If we substitute the following expressions, which are fundamental

in elastic theory, we may obtain an expression for Wi in terms of

the stresses alone.

x (C X + where J = 67+yt+%

y = fx nd--=---------
e re and o , a s4o)

The above equation reduces to another one, as shown.

2iI_ X+T +



20

In the case of the plate, we have only cg , , , which have

the same values they had earlier. This simplifies the equation

for the internal work, and leads to the final form.

o 6! XCo I

ag jj YZ. 4  
Z_ )~iX

....a t61u 2- SS( / )
00Dzf

In the

we have a force,

it acts, so that

nection with P.

cI

problem of the evaluation of the external work,

P, which is constant during the interval in which

the factor j does not enter in this case in con-

If u is the displacement, the external work on a

lengthwise strip of the plate is given by the ex-

pression below.

We P u dx

From the figure on the left, u is calculated as

follows:

ds - dx ..
dx

Expanding and dropping terms of higher order, we

have:

The total value of the external work on the plate becomes the

double integral below.
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a b

It may be remarked that these expressions for the internal and ex-

ternal work are in reality second order quantities relative to any

sidewise displacement, and that the work done by stress forces and

external forces is not of first order.

When Wi and We are equated, we have mutual equilibrium.

If the load is small, an excess of energy due to bending in the

plate makes it return to its former position. When We is greater,

the deflection tends to increase. The equality of these two ex-

pressions for the work is the criterion of instability, and the

load which corresponds to this condition is the critical load.

y It now remains to apply this theory to the plate of

Y-L sides, x = 0, a, and y = 0, b

which was discussed earlier. The
X=o

problem is that of assuming a

suitable expression for the de-

flection, w. Since three of the sides are simply supported, and

the fourth is free, the following value fulfills the boundary con-

ditions satisfactorily.

I aX

This presupposes that we have a rotation of each elemental strip

about the axis of x.

The expression for w is now substituted into the com-
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plete expression for the internal work.

Upon successive differentiations of w, several terms of the in-

tegral drop out when the values are substituted, and we have:

a

4y4 1 XC 7rx!
0 0

More terms vanish in the integration between the limits 0 and a,

and 0 and b, and the final result is as follows:

For the value of the external work, the evaluation of the inte-

gral yields the final result.

wAe -,zA 
-

/2a~

The internal and external work are now equated to find the cri-

tical solution.

17 y 6 (1 -e" C

This result may be correlated to the solution given by

the exact method if we introduce the expression, U.

p CU U zb 2  6(1
p V -~- 61-
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If values of the physical characteristics and dimensions of the

plate under consideration are substituted in and a specific U is

found, its amount is exactly that found from substitution of val-

ues of V into the equation provided by the exact method.

The method of internal and external work will now be ex-

tended to cover the case in which four sides of the plate are sim-

ply supported, and the forces are applied as before, on the two

edges: x a 0, and x a.

In this case the deflection, w, may be represented by a

double sine series, as follows:

.-w=oo a

i,4 4t__ 4Ly7r, $:, -OA4-1

In this, m indicates the number of half waves into which the plate

divides as it deflects. If this expression is substituted into the

integral for the internal work, which is then solved as before, we

have, after some reduction:

(f 441 7r 144 Tr

Z _44b A M,

The same value is substituted into the equation for the external

work, which becomes:

Weisnow etqu t Aa b ad a e io

Wle is now set equal to Wli as before, and an expression for the
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critical load is obtained.

In applying this, we set n equal to 1, and chose m so that the

critical load will be a minimum. The formula then simplifies to

the following:

If the length of the plate is small, so that it divides into only

one half wave, the value of the load becomes:

r- .c [2E+ a
The question now arises as to when the plate will break

up into a single half wave, and when into two or more. Since, at

the point of transition from m waves into m. +1 waves, the critical

load is the same, we may obtain an equation as follows:

----- (A44+ ) -I

This reduces to the relation between a and b: a = b m(m+l)
So, as m increases, we have the following relations a and b.

m: 1 2 3 4 5

a/b: 1.4 2.45 3.46 4.47 5.48
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Investigation shows that the constant for any particular case:b I + 1

Has values slightly above 4 at low m, but as m increases above

2 and 3, the value 4 is a very close approximation. The express-

ion for the critical load for long plates then becomes:

L77r

If a/b is below 2.5, the longer equation should be used.
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- Discussion of Theoretical Results -

In the formulas which have been developed, it is impor-

tant to note that P is the critical running load, so that the cri-

tical stress is given by:

p rin whatever units are used.t

Furthermore, in both the expressions it is evident that

as the length of the plate, a, increases, the critical load tends

towards a constant value.

For the plate with one edge free, the term, 2 becomes progress-

ively smaller, while the rest of the terms remain constant, so that

the curve of P against a drops sharply at first, and then flattens

out horizontally.

For the plate with both edges simrply supported, the curve

of P against a behaves in a similar manner, as has already been

noted.
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PART II

APPLICATION OF THEORETICAL FORMUIAS

TO TEST RESULTS

The results in the previous section have been obtained

for plates which had various mathematical boundary conditions, and

to which the load was considered to be uniformly applied. In re-

lating the formulas to duralumin columns, it is evident at once

that there is chance for divergence between the actual test con-

ditions and those of the theory, particularly in the amount of

fixity of the supported leg of the column, to which the plate for-

mulas are applied.

In respect to the various degrees of edge fixity, it

may be mentioned that complete support at the edges almost never

occurs, at least in the type of columns used in duralumin con-

struction. This would require that the outstanding flange should

project from a practically solid mass of metal at its base, which

is a condition not met with in practice.

The simplest column section to which theory may be

applied is an angle whose legs have the same dimensions, and may

be considered to be plates which are simply supported on their in-

ner edges. Channels, Z-, and other sections become more complica-

ted.

The test results used here were obtained at various times

by different people, and the work from this point on will divided
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according to the type of section and the source of the test re-

sults.

A remark is in order at this point on the range of val-

ues of the slenderness ratio through which the plate formulas may

be used. At high values of L/r, the column tends to fail as a

whole, by bending, rather than in any of its parts, and the cri-

tical stress is given by Euler's formula:

Stress - ) .

in which r is the least radius of gyration of the section.

The plate formulas have no significance when applied to columns

in the Euler range, since at that point, the mechanism of fail-

ure becomes entirely different.

In the tabulations which follow, the following symbols

are used:

L : length of column in inches

S = width of an outstanding leg in inches

B = width of back of a channel in inches

All loads are in pounds, and all stresses in pounds per square

inch.
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Most of the tests run on columns of angle section have

been on those in which both legs had the same dimensions, so that

for the theoretical work, they could be considered to be two iden-

tical plates, simply supported on one edge and free on the other.

The expression used was:

P C f + 6lb where C Et1

The following test results were obtained from a thesis

written by Messrs. Harsch and Vihitehead at i. I. T. in 1920. In

this, the columns were tested as pin ended columns by the use of

spherical bearings, fully described in their paper. Several dif-

ferent types of sections were used, including channels, modified

angle sections, and angles with equal legs, the last of which are

of interest here. A number of different sizes of each section were

tried, and at different values of I/r. The comparative results of

experiment and theory are given on the first of the tables and

curves which follow, together with the dimensions of the sections.

In this same thesis, some data is given for British

tests on similar sections and under the same conditions. The app-

lication of theory to these is also given here.

Krein, in the Navy Report mentioned in the historical

discussion has some results of a few tests on angles, which are

worked out at the end of this section.
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Harsch & Whitehead Mark S-1

E : 10 200 000 c'< = 3/10

t : .0417 S a .788 S/t : 18.87 A = .061

C Calc. Ioad

67.7

67.7

67.7

67.7

67.7

830

748

734

728

726

Harsch & Whitehead

Calc. Stress Test Stress

13600

12270

12000

11940

11900

17800

13000

12130

11000

8460

Mark S-2

E : 10 200 000 L7 = 3/10

t : .0505 S = .788 S/t = 15.6 A : .076

L

3.12

6*35

9.5

12.82

C Calc. Load Calc. Stress Test Stress

120.3

120.3

120.3

120.3

120*3

1476

1328

1302

1294

19430

17500

17100

16800

23160

17760

15260

10500

1290 16750

12r3 L

19.19

40.7

60.9

80.6

101.9

6.38

9.55

12.65

16.0

19.9

40.5

60.5

82.0

101 15.98 7700
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Harsch & Whitehead Mark S-3

E = 10 200 000

t = .0579

I/'r _L
21.9 3.42

40.3 6.27

61.4 9.59

82.0 12.82

101 15.93

CT = 3/10

S = .788 S/t : 13.6 A 2 .0845

C_ Calc. Load Calc. Stress Test Stress

181.2 2170 25700 25600

181.2 2000 23700 22500

181.2 1960 23200 18500

181.2 1950 23100 13100

181.2 1944 23000 8930

British Mark N

E = 10 700 000

L

1.97

2084

5.91

7.88

11*83

15.75

19.7

S : 1.0

C

122*4

122.4

122.4

122.4

122.4

122.4

122.4

cr- 3/10

S/t = 20 A a .0975

Calc. Load Calc. Stress Test Stress
on curves

1652 16950

1328 13630 z000C

1100 11300 / S"C

1066 10940 a5*c

1044 10700

1038 10650 I

1038 10650

t = .05

L/r

10

20

30

40

60

80

100
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British Mark L

E = 10 700 000 )' : 3/10

S/t = 17.5 A = .0544

C Calc. Load

62.7 1216

62.7 956

62.7 804

62.7 796

62.7 764

62.7 760

62.7 756

Calc. Stress

22300

17540

14760

14620

14010

13950

13900

Test Stress
on curves

Krein Table

E = 10 000 000 6r : 3/10

t = .029 S = .75 S/t a 25.8 A : .0426

C Calc. Load Calc. Stress Test Stress

22.3

22.3

259

252

6070

5820

8120

6160

E = 10 000 000 cr =3/10

t Z .081 S z.75 S/t = 9.26 A a .1149

L C Calc. Load Cale. Stress Test Stress

486.0 5640 49000

486.0 5480 47700

t = .04 S = .7

L/r

10

L

1037

2.76

4.11

5.48

8022

10.95

100 13.7

III

L

36.1

72 12

44.5 24800

1060088.8 12
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DISCUSSION OF RESULTS AND CONCLUSIONS

In connection with these results, it may be mentioned

that Iundquist (N. A. C. A. T. N. 413) applied the theoretical

formula for angles to some of the data included here, and in add-

ition to some otLer British Tests. He arrived at the same conclus-

ions indicated by the curves given here - that the theory is

over conservative at low values of 1/r, though it gives a good

approximation in the range of L/r from 40 to 80.

The conditions on which the mathematics of the theory

is built up seem to be most closely fulfilled when S/t is from

20 to 25. At lower values of this ratio, the theory tends to

overestimate the critical stress.

When S/t is from 20 to 25, and L/r is from 40 to 80,

it may be concluded that the theory will give good results. At

low L/r it is likely to be conservative, and at medium values of

L/r, with S/t very low, the results are too high.
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CHANNELS

The most valuable data for this section was that taken

from A. C. I. C. No. 598, "The Compressive Strength of Duralumin

Channels," by R. A. Miller. In general, these channels are rather

larger than most of the extruded types, and were fabricated in a

brake or by hammering with a wooden mallet over a hard wood block

while the material was in the annealed condition. It was after-

ward heat-treated.

In the tests, the ends of the specimens were supported

in cradles, which were in turn mounted on knife edges at the same

distence apart as the ends of the channels. In this way, they were

tested as pin-ended columns. Any eccentricity of the load, which

was apparent as a deflection, was removed by adjustment of micro-

meter screws on the cradles, which could be shifted slightly so

that the compressive load was applied in the neutral plane.

Additional data was supplied by Messrs. Becker and Nov-

eck in a thesis written at M. I. T. in 1922. A series of tests were

run on three general types of channels, the first of which, the

Mark-A, are of most interest here. The end loads were applied

through spherical bearings, which are described in their paper,

and the effect was that of a pin-ended column.

The Navy Report by Krein, mentioned earlier, also con-

tains a small amount of data on the compressive strength of chan-

nel sections. The results of all these experiments are listed in



35

tables which follow.

In applying the theoretical formulas to channel sec-

tions, we approximate the two legs by plates, simply supported

on the inner edge, and free on the outer edge. The back of the

channel is represented by a plate which is simply supported on

both of its edges.

It is evident that in any given case, the critical load

and critical stress of the legs will not be equal to the critical

load and stress of the back, a condition which is represented by

the figure on the left. The question

now arises as to what critical stress

is to be taken as being that of the

column.

Investigation shows that a satisfac-

tory method is to calculate the load which is critical for the

legs, and that which is critical for the back. The sum of these

loads is then the critical load for the column, and the stress is

at once obtained when this number is divided by the area of the

whole section.

The above procedure amounts to assuming that where a

uniform load is applied to the ends, it distributes itself

according to the strength of the part of the section on which it

acts. Usually the legs are found to be the weaker part, so that

as the load increases, it is taken equally by sides and back up

to the point where the critical value for the sides is reached.

From that point on, the extra load is carried by the back until



36

the critical point for the back is attained and slightly exceeded,

whereupon the column fails.

For a channel with equal legs, the expression for the

critical stress then becomes:

Pcritical a R+L
A

where L. and are the critical loads on sides and back respect-

ively.

This method will now be applied to an example from Hil-

ler's data, in which the agreement between theory and the test val-

ue is fairly close.

Suppose that we have a duralumin channel which is 4.08"

in length, having sides of .84" and .85" respectively, a back of

1.75", and a thickness of .053". For this material, : 3/10

and E = 9 750 000.

In applying the formulas, we first

find the value of C, which is con-

stant for both legs and the back.

C 3 -9 730 000(.000149) =12.7
12(1 - o4) 12(1 - .09)

For the running load on the two legs, which is slightly different

in each case, we have the expression:

P =6
La4 b2j

Ps 132. 76(O ) 869; Ls 869(.84) 730
L



c 37

p 132.7 9.87 + 6(0.7)_ 850; Ls?, 850(.85) = 722
s 16.65 .726

In determining the critical running load for the back of the chan-

nel, we have C = 132.7, and since the ratio S/B x a/b = 2.33, the

complete constant multiplier developed in the theory is calculated

and found to be 4.09 rather than the value of 4. The expression

for the load is then:

. 132.7(%87)4.09 1755; I = 1755(1.75)
Pb 3.063

Lb 3075

The total critical load then becomes:

730
722

3075
4527# = Load

This checks fairly well with the experimental value of 5000#.

If both are divided by the total section area of .1767 sq. ins.,

we have a calculated critical stress of 25600 #/ sq. in. against

a tests stress of 28300 #/ sq. in.

It is to be noted that in channels of ordinary propor-

tions, such as this one, the allowable running load for the legs

is much less than the allowable running load for the back.

In the tables which follow, the above procedure is ap-

plied to a number of channels of different types and slendtrness

ratios, the data for which is taken from the sources mentioned.
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Miller - Table I

E : 9 730 000 o- = 3/10

t

.05

.051

.05

.o51

.051

.051

.05

.05

25

24.5

25

24.5

24.5

24.5

25

25

B/t

50.6

49.0

50

49.0

49.0

49.0

50

50

.494

.500

.500

.500

.500

.500

.500

.500

C

111.4

118.1

111.4

118.1

118.1

118.1

111.4

111.4

Calc. Load

2615

2691

2522

2669

2665

2661

2512

2512

Av. Test Load

3425

3200

4005

3040

2970

2715

2100

2280

Calc. Stress Test Stress

10770

10930

10460

10850

10830

10820

10390

10390

14110

13010

16605

12360

12080

11040

8705

9450

L

5.9

9.9

13.95

17.84

21.8

25.78

33.65

37.69

14.90

24*97

35.18

45.0

55.0

65.1

84.85

95.0

s

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

B

2.53

2.50

2.50

2.50

2.50

2.50

2.50

2.50

14.90

24.97

35.18

45.0

55.0

65.1

84.85

95.0



Miller - Table II

E = 9 730 000 4' : 3/10

t s/t 1-/t /B

15.47

13.55

14.19

13.62

14.25

24.46

25.45

31.0

32.45

40.6

40.4

49.4

47.2

59.65

60.7

67.8

70.2

80.2

80*2

L

4.08

4.08

4.15

4.15

4.17

6.9

6.9

9.6

9.6

12.37

12.37

15.13

15.15

17.95

17.95

20*65

20.68

23.45

23.45

S

.845

.95

.925

.96

.925

.895

.865

.975

.935

.96

.965

.965

1.00

.95

.935

.96

.925

.925

.925

B

1.75

1.75

1.75

1*75

1.74

1.72

1.72

1.75

1.75

1.77

1.78

1074

1.72

1.76

1.76

1.75

1.75

1.75

1.74

.053

.053

.051

.052

.051

.052

.052

.054

.053

.052

.052

.052

.052

.051

.052

.052

.051

.052

.051

16.0

1709

1801

18.45

1801

17.2

1605

18.05

17.44

1805

18.55

18.55

19.2

1806

1800

18.5

1801

17.8

18.1

33.0

3360

3403

33.7

3403

33.1

33.1

32.4

33.0

34.0

34.2

33.5

33.1

3405

33.8

33.6

34.3

33.6

34.1

.483

.543

.528

.548

0531

.520

.502

.556

.534

.542

.542

.554

.581

* 540

.531

.548

.527

.528

.531

C

132.7

132.7

118.1

125.5

118.1

12505

125.5

140.3

132.7

125.5

125.5

125.5

125.5

118.1

12505

125.5

118.1

125*5

118.1



Miller - Table II (continued)

15*47

13.55

14.19

13.62

14.25

24.46

25.45

31.0

32.45

40.6

40*4

4904

47.2

59065

60.7

67.8

70.2

80.2

80.2

Calc. Load

4527

4400

3929

4134

3955

4105

4146

4502

4190

3912

3890

3958

3950

3700

3958

3926

3745

3974

Area Calc. Stress Test StressAv. Test Load

5000

4570

4130

3380

3520

4335

3630

4170

4330

4250

4080

3140

4140

3350

3210

3220

2940

2620

.1767

.1878

.1784

.1854

.1778

.1771

.1740

.1928

.1862

.1864

.1875

.1854

.1885

.1814

.1833

.1854

.1784

.1818

25600

23400

22100

22200

22100

23100

23700

23300

22500

20950

20700

21300

20900

20400

21600

21000

21000

21600

21100 14170

28300

24330

23150

18230

19800

24480

20860

21630

23250

22800

21760

16940

21960

18470

17510

17370

16480

14410

3754 2520 .1778
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Becker & Noveck - Mark A-1

E : 10 700 000

I/rz L

20.4 4.73

40.4 9.38

60.6 14.OP

80.4 18.62

100.4 23.3

S

.745

.745

.745

.745

.745

B

.965

.965

.965

.965

.965

( = 3/10

t

.035

.035

.035

.035

.035

S/t

21 *3

21.3

21.3

21.3

21.*3

B/t

27.6

27.6

27.6

27.6

27.6

.772

.772

'772

.772

.772

Calc. Load

2222

2200

2196

2194

2194

Av. Test Load

2485

2566

1783

1130

766

Area

.0816

.0816

.0816

.0816

.0816

Calc. Stress Test Stress

28500 31850

28200 32900

28100 22850

28000 14500

28000 9830

Becker & Noveck - Mark A-2

B

.965

.965

.965

.965

.965

t

.05

.05

.05

.05

.05

sI/t

14.9

14.9

14.9

14.9

14*9

B/t
19.3

19.3

19.3

19.3

19.3

C

42

42

42

42

42

20.4

40.4,

60.6

80.4

100.4

L

4.70

9.14

13.8

18.5

23.0

1/r

20.4

40.4

60.3

80.5

100

S

.745

.745

.745

.745

.745

S/B

.772

.772

.772

.772

C

122.4

122.4

122.4

122.4

122.4
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Becker & Noveck - Mark A-2 (cont.)

Calc. Load Av. Test Load

6462 3833

6400 3216

6390 2166

6380 1450

6380 1080

Area

.1167

.1167

.1167

.1167

.1167

Calc. Stress Test Stress

56400 39340

54900 33333

54800 23780

54700 16500

54700 11873

Calculations for the Becker& Noveck Mark A-3 Sections

showed still greater divergence, the ratio of Calculated/Test be-

ing about 1.78 at an 4/r of 20.1

Krein Table III

B =10

L S

7.25 .562

7.25 .562

000 000

B t

.75 .029

.75 .081

s/t
19.37

6*94

- 3/10

B/t §

25.8 .75

9.25 .75

Calc. Load Av. Test Load Area Calc. Stress

1512 1050 .0526 28700

32800 4160 .144 246000

C

22*3

486

Test Stress

19900

30700

20.4

40.4

60.3

80.5

100

40*3

27.7

40.3

27*7
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Miller - Table I'

E = 9 730 000

_

14.28

14.27

14.13

13.95

1306

13.3

S

1.25

1.25

1.25

1.25

1.25

1.25

B

1.25

1050

2.00

2.50

3.00

3.50

T- = 3/10

t

.052

.051

.052

.050

0051

.051

Calc. Load Av. Load

4810 2955

3918 2695

3340 3075

2524

2362

2138

4005

3675

3550

s/t
24

24*5

24

25

2405

2405

Area

.1856

.1949-

.2246

.2412

.2714

.2969

B/t

24

29.4

38.5

50

58.8

68.7

1.0

.833

. 625

.50

.417

.357

C

125.5

118.1

125.5

111.4

118.1

118.1

Calc. Stress Test Stress

26400 15920

20100 13830

14870 13690

10470 16605

8690 13540

7200 11955

35

35

35.06

35.18

35

35.06

35

35

35.06

35.18

35

35.06



Miller - Table I''

E : 9 730 000

B

1.60

1695

2.56

3.25

3.90

4.50

t

.062

.064

.063

.063

.063

.063

26*1

25

25.4

25.7

25.6

25.7

Cale. Load

6350

5980

4628

3874

3432

3130

Av. Test Load

3965

4085

3525

4050

5135

5230

Area

.2808

.3093

.3431

.3891

.4288

.4678

Cale. Stress Test Stress

22600 14120

19860 13210

13500 10275

9970 10410

8000 11975

6590 11180

C'- = 3/10

L

18.20

18.25

18.08

17.8

17.43

17.05

34.5

34.96

34.9

34.56

34.8

34.5

S

1.62

1.60

1.60

1.62

1.61

1.62

24*8

30.5

40.6

51*6

61.9

71*4

S/B

1.01

.82

.625

.50

. 413

.36

C

212

233.5

222.5

222.5

222.5

222.5

Ivr
34.5

34.96

34.9

34.56

34.8

34.5
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DISCUSSION OF RESULTS AND CONCLUSIONS

In connection with the experimental data used in the

preceeding tables, it may be mentioned that in most cases the

values are the averages of several tests of presumably identi-

cal columns. In some cases the divergence between test values

was considerable, the average in Miller's Table I being about

1500 #/ sq. inch. The Becker & Noveck tests were the averages

of three runs on identical columns, and in most cases were in

fairly closely agreement with each other.

The computed results, together with the accompanying

curves, show that within certain limits, the theoretical for-

mulas will give the critical stress with a fair degree of ac-

curacy. The geometrical relations which have to be fulfilled by

the dimensions of the section are indicated by the last two sets

of curves, and it is evident that the conditions of the theory

are most closely approximated when S/B is about l, and B/t is

about 30. If B/t decreases much below 25, the critical stress as

given by the formulas is greatly overestimated.

Since many of the lighter types of columns sections

fulfill these relations of back to sides and back to thickness,

the theory may be applied to a fairly wide range.
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